منابع مشابه
A nonlinear inequality
A quadratic inequality is formulated in the paper. An estimate of the rate of decay of solutions to this inequality is obtained. This inequality is of interest in a study of dynamical systems and nonlinear evolution equations. It can be applied to the study of global existence of solutions to nonlinear PDE.
متن کاملA nonlinear inequality and applications
A nonlinear inequality is formulated in the paper. An estimate of the rate of decay of solutions to this inequality is obtained. This inequality is of interest in a study of dynamical systems and nonlinear evolution equations. It can be applied to the study of global existence of solutions to nonlinear PDE.
متن کاملNonlinear differential inequality
A nonlinear differential inequality is formulated in the paper. An estimate of the rate of growth/decay of solutions to this inequality is obtained. This inequality is of interest in a study of dynamical systems and nonlinear evolution equations in Banach spaces. It is applied to a study of global existence of solutions to nonlinear partial differential equations.
متن کاملA Nonlinear Inequality and Evolution Problems
Assume that g(t) ≥ 0, and ġ(t) ≤ −γ(t)g(t) + α(t, g(t)) + β(t), t ≥ 0; g(0) = g0; ġ := dg dt , on any interval [0, T ) on which g exists and has bounded derivative from the right, ġ(t) := lims→+0 g(t+s)−g(t) s . It is assumed that γ(t), and β(t) are nonnegative continuous functions of t defined on R+ := [0,∞), the function α(t, g) is defined for all t ∈ R+, locally Lipschitz with respect to g u...
متن کاملa cauchy-schwarz type inequality for fuzzy integrals
نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Inequalities
سال: 2008
ISSN: 1846-579X
DOI: 10.7153/jmi-02-40